Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range.
نویسندگان
چکیده
We present a novel technique of far-field localization nanoscopy combining spectral precision distance microscopy with widely used fluorochromes like the Green Fluorescent Protein (GFP) derivatives eGFP, EmGFP, Yellow Fluorescent Protein (YFP) and eYFP, synthetic dyes like Alexa 488 and Alexa 568, as well as fluoresceine derivates. Spectral precision distance microscopy allows the surpassing of conventional resolution limits in fluorescence far-field microscopy by precise object localization after the optical isolation of single signals in time. Based on the principles of this technique, our novel nanoscopic method was realized for laser optical precision localization and image reconstruction with highly enhanced optical resolution in intact cells. This allows for spatial assignment of individual fluorescent molecules with nanometre precision. The technique is based on excitation intensity dependent reversible photobleaching of the molecules used combined with fast time sequential imaging under appropriate focusing conditions. A meaningful advantage of the technique is the simple applicability as a universal tool for imaging and investigations to the major part of already available preparations according to standard protocols. Using the above mentioned fluorophores, the positions of single molecules within cellular structures were determined by visible light with an estimated localization precision down to 3 nm; hence distances in the range of 10-30 nm were resolved between individual fluorescent molecules allowing to apply different quantitative structure analysis tools.
منابع مشابه
Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins.
We show far-field fluorescence nanoscopy of different structural elements labeled with an organic dye within living mammalian cells. The diffraction barrier limiting far-field light microscopy is outperformed by using stimulated emission depletion. We used the tagging protein hAGT (SNAP-tag), which covalently binds benzylguanine-substituted organic dyes, for labeling. Tetramethylrhodamine was u...
متن کاملLabel-free photoacoustic nanoscopy.
Super-resolution microscopy techniques - capable of overcoming the diffraction limit of light - have opened new opportunities to explore subcellular structures and dynamics not resolvable in conventional far-field microscopy. However, relying on staining with exogenous fluorescent markers, these techniques can sometimes introduce undesired artifacts to the image, mainly due to large tagging age...
متن کاملFluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters
We demonstrate nanoscale resolution in far-field fluorescence microscopy using reversible photoswitching and localization of individual fluorophores at comparatively fast recording speeds and from the interior of intact cells. These advancements have become possible by asynchronously recording the photon bursts of individual molecular switching cycles. We present images from the microtubular ne...
متن کاملLens-based fluorescence nanoscopy.
The majority of studies of the living cell rely on capturing images using fluorescence microscopy. Unfortunately, for centuries, diffraction of light was limiting the spatial resolution in the optical microscope: structural and molecular details much finer than about half the wavelength of visible light (~200 nm) could not be visualized, imposing significant limitations on this otherwise so pro...
متن کاملRed-emitting rhodamine dyes for fluorescence microscopy and nanoscopy.
Fluorescent markers emitting in the red are extremely valuable in biological microscopy since they minimize cellular autofluorescence and increase flexibility in multicolor experiments. Novel rhodamine dyes excitable with 630 nm laser light and emitting at around 660 nm have been developed. The new rhodamines are very photostable and have high fluorescence quantum yields of up to 80 %, long exc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of microscopy
دوره 235 2 شماره
صفحات -
تاریخ انتشار 2009